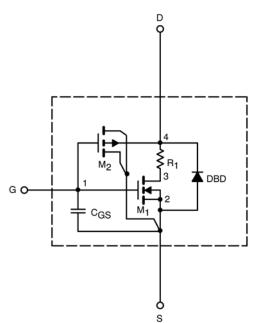


Dual N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

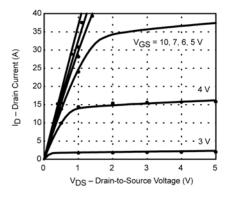
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

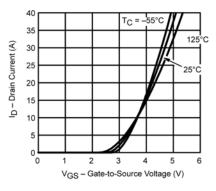
SPICE Device Model Si9936BDY Vishay Siliconix

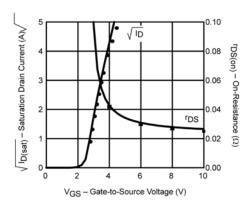
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = 250 μ A	1.9		V
On-State Drain Current ^a	I _{D(on)}	$V_{\text{DS}}~\geq 5$ V, V_{GS} = 10 V	165		А
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = 10 V, I _D = 6 A	0.027	0.028	Ω
		V_{GS} = 4.5 V, I _D = 4.9 A	0.038	0.041	
Forward Transconductance ^a	g _{fs}	V_{DS} = 15 V, I _D = 6 A	13	12	S
Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = 1.7 A, $V_{\rm GS}$ = 0 V	0.80	0.80	V
Dynamic ^ь					
Total Gate Charge	Qg	V_{DS} = 15 V, V_{GS} = 10 V, I_{D} = 6 A	8	8.6	nC
Gate-Source Charge	Q _{gs}		1.8	1.8	
Gate-Drain Charge	Q_{gd}		1.5	1.5	
Turn-On Delay Time	t _{d(on)}	V_{DD} = 15 V, R _L = 15 Ω I _D \cong 1 A, V _{GEN} = 10 V, R _G = 6 Ω	16	10	ns
Rise Time	t _r		8	15	
Turn-Off Delay Time	$t_{d(off)}$		23	25	
Fall Time	t _f		6	10	

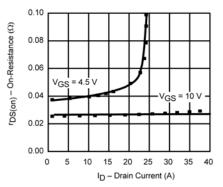
Notes

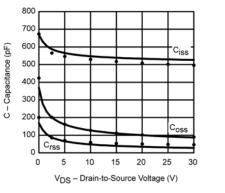
a.

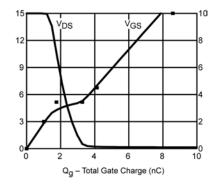

Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. Guaranteed by design, not subject to production testing. b.


VISHAY




SPICE Device Model Si9936BDY Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.